在三角形ABC中,a=6,b=7,c=8,则下面式子成立的是在△ABC中,若a=6,b=7,c=8,则下列成立的是6>7cosC+8COSB6

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 19:33:21
在三角形ABC中,a=6,b=7,c=8,则下面式子成立的是在△ABC中,若a=6,b=7,c=8,则下列成立的是6>7cosC+8COSB6
x){:gœ/Ozwkumtlum-tv|EO?];YDŽ竻jy6c=Piz^t/c:3;bgm g`'3"} li' `](ؘ(""v6T mvnQQbaP $lM5416Rx~=;eOz>MebhNNPYO{"ҧ;7?ShHH=m%&XtPW]aC5kAF 18

在三角形ABC中,a=6,b=7,c=8,则下面式子成立的是在△ABC中,若a=6,b=7,c=8,则下列成立的是6>7cosC+8COSB6
在三角形ABC中,a=6,b=7,c=8,则下面式子成立的是
在△ABC中,若a=6,b=7,c=8,则下列成立的是
6>7cosC+8COSB
6<7COSC+8COSB
6=7COSC+8COSB

在三角形ABC中,a=6,b=7,c=8,则下面式子成立的是在△ABC中,若a=6,b=7,c=8,则下列成立的是6>7cosC+8COSB6
cosC=a2+b2-c2\2ab=1\4 cosB=a2+c2-b2\2ac=17\32 (这个是余弦定理,那个a2,b2,c2是指a的平方,2ab ,2ac是指2倍的ab,2倍的ac)
所以7cosC+8cosB=6 所以成立的是第三个