∫dx/(1+√(1+x∧2))用第二积分法求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:48:49
∫dx/(1+√(1+x∧2))用第二积分法求
x){Ա:BCGtţFt)+YdWv=<&"}PdPcPPS64֌U1ġDAMZ()]h%OCF(ׅ*j p 'T(*$ۡb&C:luA4B9*NG2A!s; +Ge%a4hp~ HPBU@hCpFQmXRD~qAb(]W;

∫dx/(1+√(1+x∧2))用第二积分法求
∫dx/(1+√(1+x∧2))用第二积分法求

∫dx/(1+√(1+x∧2))用第二积分法求
∫ dx/[1 + √(1 + x²)]
= ∫ 1/[1 + √(1 + x²)] • [1 - √(1 + x²)]/[1 - √(1 + x²)] dx
= ∫ [1 - √(1 + x²)]/[1 - (1 + x²)] dx
= ∫ [1 - √(1 + x²)]/(-x²) dx
= -∫ 1/x² + ∫ √(1 + x²)/x² dx,令x = tanθ,dx = sec²θ,√(1 + x²) = √(1 + tan²θ) = √sec²θ = secθ
= 1/x + ∫ sec³θ/tan²θ dθ
= 1/x + ∫ secθcsc²θ dθ
= 1/x + ∫ secθ • (1 + cot²θ) dθ
= 1/x + ∫ cscθcotθ dθ + ∫ secθ dθ
= 1/x - cscθ + ln|secθ + tanθ| + C
= 1/x - √(1 + x²)/x + ln|x + √(1 + x²)| + C