已知数列{an}中,a1=1,an乘a(n+1)=(1/2)^n(n∈N*),记T2n为{an}的前2n项和①设bn=a2n,证明:数列{bn}是等比数列②求T2n③不等式64T2n乘a2n≤3(1-ka2n)对一切n∈N*恒成立,求实数k的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 06:56:01
已知数列{an}中,a1=1,an乘a(n+1)=(1/2)^n(n∈N*),记T2n为{an}的前2n项和①设bn=a2n,证明:数列{bn}是等比数列②求T2n③不等式64T2n乘a2n≤3(1-ka2n)对一切n∈N*恒成立,求实数k的最大值
已知数列{an}中,a1=1,an乘a(n+1)=(1/2)^n(n∈N*),记T2n为{an}的前2n项和
①设bn=a2n,证明:数列{bn}是等比数列
②求T2n
③不等式64T2n乘a2n≤3(1-ka2n)对一切n∈N*恒成立,求实数k的最大值
已知数列{an}中,a1=1,an乘a(n+1)=(1/2)^n(n∈N*),记T2n为{an}的前2n项和①设bn=a2n,证明:数列{bn}是等比数列②求T2n③不等式64T2n乘a2n≤3(1-ka2n)对一切n∈N*恒成立,求实数k的最大值
①an×a(n+1)=(1/2)^n,a(n-1)×an=(1/2)^(n-1)
两式相除,得:a(n+1)/a(n-1)=1/2,那么a(n+2)/an=1/2
而bn=a2n,b(n+1)=a(2n+2),所以b(n+1)/bn=a(2n+2)/a2n=1/2,为常数
而b1=a2=(1/2)÷a1=1/2,所以数列{bn}是以1/2为首项、1/2为公比的等比数列
②bn=(1/2)^n (n∈N+),其前n项和Bn=1/2×[1-(1/2)^n]/(1-1/2)=1-(1/2)^n
令cn=a(2n-1),同理可得cn是以c1=a1=1为首项、1/2为公比的等比数列,
cn=(1/2)^(n-1),其前n项和Cn=1×[1-(1/2)^n]/(1-1/2)=2-(1/2)^(n-1)
所以T2n=Bn+Cn=1-(1/2)^n+2-(1/2)^(n-1)
=3-3×(1/2)^n
③64T2n×a2n≤3(1-kan),a2n=bn=(1/2)^n
那么64×[3-3×(1/2)^n]×(1/2)^n≤3[1-k×(1/2)^n]
化简,得:k≤(2^n)+64×(1/2)^n-64,对于一切n∈N+恒成立
那么k要小于等于(2^n)+64×(1/2)^n-64的最小值
而(2^n)+64×(1/2)^n-64≥(2√64)-64=-48 (当且仅当(2^n)=64×(1/2)^n,即n=3时取等)
所以k≤-48,即实数k的最大值为-48
①an×a(n+1)=(1/2)^n,a(n-1)×an=(1/2)^(n-1)
两式相除,得:a(n+1)/a(n-1)=1/2,那么a(n+2)/an=1/2
而bn=a2n,b(n+1)=a(2n+2),所以b(n+1)/bn=a(2n+2)/a2n=1/2,为常数
而b1=a2=(1/2)÷a1=1/2,所以数列{bn}是以1/2为首项、1/2为公比的等比数列
全部展开
①an×a(n+1)=(1/2)^n,a(n-1)×an=(1/2)^(n-1)
两式相除,得:a(n+1)/a(n-1)=1/2,那么a(n+2)/an=1/2
而bn=a2n,b(n+1)=a(2n+2),所以b(n+1)/bn=a(2n+2)/a2n=1/2,为常数
而b1=a2=(1/2)÷a1=1/2,所以数列{bn}是以1/2为首项、1/2为公比的等比数列
②bn=(1/2)^n (n∈N+),其前n项和Bn=1/2×[1-(1/2)^n]/(1-1/2)=1-(1/2)^n
令cn=a(2n-1),同理可得cn是以c1=a1=1为首项、1/2为公比的等比数列,
cn=(1/2)^(n-1),其前n项和Cn=1×[1-(1/2)^n]/(1-1/2)=2-(1/2)^(n-1)
所以T2n=Bn+Cn=1-(1/2)^n+2-(1/2)^(n-1)
=3-3×(1/2)^n
③64T2n×a2n≤3(1-kan),a2n=bn=(1/2)^n
那么64×[3-3×(1/2)^n]×(1/2)^n≤3[1-k×(1/2)^n]
收起