设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别为M、m,集合A={x|f(x)=x}.若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:38:37
xRJ@,21ΘBJ̀
ZA((6bZ[?4]I
܈psϹ;3\2xxRn#wVgdVݓڔ
li7?հvKXKgS:w^nt73ɗr$(VF
P
设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别为M、m,集合A={x|f(x)=x}.若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值
设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别为M、m,集合A={x|f(x)=x}.
若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值
设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别为M、m,集合A={x|f(x)=x}.若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值
f(x)=x,即ax^2+(b-1)x+c=0
A={1},说明a+b-1+c=0
又∵ Δ=(b-1)^2-4ac=0
∴a=c,b=1-2a
f(x)=ax^2+(1-2a)x+a
对称轴为x=1-1/(2a),且 a>1
∴对称轴的取值范围是[1/2,1)
∴x=(2a-1)/2a时有最小值m,且为(4a-1)/4a
当x=-2时有最大值M,且为4a-2+4a+a=9a-2
g(a)=(4a-1)/4a+9a-2=9a - 1/(4a) - 1
g(a)在(0,+∞)上单调递增,所以a=1时有最小值
g(1)=8-1/4=31/4
设abc>0,二次函数f(x)=ax2+bx+c的图像可能是
判断二次函数f(x)=ax2+bx+c(a
二次函数f(x)=ax2+bx+c(a
证明二次函数f(x)=ax2+bx+c(a
证明二次函数f(x)=ax2+bx+c(a
二次函数f(x)=ax2+bx+c(a>0), f(x)=ax2+bx+c(a
设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n若a>0且0
设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,(m0的解集
设a,b,c成等比数列,二次函数f(x)=ax2+bx+c满足f(0)=-4,则函数f(x)最值是
设二次函数f(x)=ax2+bx+c,如果f(x1)=f(x2)(x1不等于x2),则f(x1+x2)等于
设二次函数f(x)=ax2+bx+c,如果f(x1)=f(x2)(x1不等于x2),则f(x1+x2)等于
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两根x¬1,x2满足0
对一切实数x,若二次函数f(x)=ax2+bx+c(a
对于一切实数x,所有二次函数 f(x)=ax2+bx+c(a
对一切实数x,若二次函数f(x)=ax2+bx+c(a
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0