如果2分之1+6分之1+12分之1+.+n(n+1)分之1=2004分之2003,n=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/23 02:03:32
如果2分之1+6分之1+12分之1+.+n(n+1)分之1=2004分之2003,n=?
x){ټ9FO;ڞ661 Bzyti 5200,c<[{"}_`gCeGiij9`gS[m BF@ 16~԰ tBXyPd>^iy`!<;ol`ED

如果2分之1+6分之1+12分之1+.+n(n+1)分之1=2004分之2003,n=?
如果2分之1+6分之1+12分之1+.+n(n+1)分之1=2004分之2003,n=?

如果2分之1+6分之1+12分之1+.+n(n+1)分之1=2004分之2003,n=?
1/[n*(n+1)]=1/n-1/(n+1)
故S=1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)=2003/2004
故n=2003

=1-1/2+1/2-1/3+1/3-1/4+.....1/n-1/(n+1)=1-1/(n+1)=n/(n+1)=2003/2004,n=2003