证明:设a,b,c是三角形的三边长,若二次方程x²+2ax+b²=0和x²+2cx-b²=0有一个相同的根,则此三角形必定是直角三角形.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:27:29
证明:设a,b,c是三角形的三边长,若二次方程x²+2ax+b²=0和x²+2cx-b²=0有一个相同的根,则此三角形必定是直角三角形.
xՒJ@F$Fw&yd,B 444P ".,Hl_&3IWyT!(.ʝCwDl|<˖LXnХwipi4u|x]DchhOBؑŬЮWQJ]IxO &i 4:;R֬u=UmC[Na0˛ mϊg8@Ϲ T~C|+tMbIA vVtTn$/*8JbI9폯 7

证明:设a,b,c是三角形的三边长,若二次方程x²+2ax+b²=0和x²+2cx-b²=0有一个相同的根,则此三角形必定是直角三角形.
证明:设a,b,c是三角形的三边长,若二次方程x²+2ax+b²=0和x²+2cx-b²=0有一个相同的根,则此三角形必定是直角三角形.

证明:设a,b,c是三角形的三边长,若二次方程x²+2ax+b²=0和x²+2cx-b²=0有一个相同的根,则此三角形必定是直角三角形.
x²+2ax+a^2+b²=a^2,(x+a)^2=a^2-b^2,x+a=根号(a^2-b^2)
x²+2cx-b²+c^2=c^2,(x+c)^2=b^2+c^2,x+c=根号(b^2+c^2)
两式相减的a-c=根号(a^2-b^2)-根号(b^2+c^2)
两边同时平方a^2-2ac+c^2=a^2-b^2+b^2+c^2-2[根号(a^2-b^2)][根号(b^2+c^2)]
2ac=2[根号(a^2-b^2)][根号(b^2+c^2)]
两边同时平方a^2c^2=a^2c^2+a^2b^2-b^4-b^2c^2
整理的a^=b^2+c^2
三角形必定是直角三角形

设a.b.c是三角形ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b| 证明:设a,b,c是三角形的三边长,若二次方程x²+2ax+b²=0和x²+2cx-b²=0有一个相同的根,则此三角形必定是直角三角形. 设a,b,c是三角形的三边长,求证a²-b²-c²+2bc>0. 若a,b,c是三角形ABC的三边长,试化简|a-b-c|+|b-c-a|+|c-a-b|. 设a,b,c分别为三角形的三边长,A,B,C是它们所对的角.证明Aa+Bb+Cc大于等于1/2(Ab+Ac+Ba+Bc+Ca+Cb) 若a,b,c是三角形ABC的三边长,且满足a^2c^2-b^2c^2=a^4-b^4,则三角形ABC是直角三角形”的逆命题判断并证明 证明:如果三角形的三边长A,B,C,满足A²+B²=C²,那么这个三角形是直角三角形? 已知a、b、c是三角形ABC的三边长,且 a二次方+b二次方+C二次方-ab-bc一ac=已知a、b、c是三角形ABC的三边长,且 a二次方+b二次方+C二次方-ab-bc一ac=0试判断三角形ABC的形状,并说明理由 设abc是三角形的三边长,求证:a²-b²-c²+2ac>0 如图,若三角形ABC的三边长a,b,c,满足A方加B方=C方,试证明三角形ABC是直角三角形,请简要写出证明过程 设a、b、c为三角形ABC的三边长,且满足a³+b³+c³=3abc,求证三角形ABC是正三角形. 已知a,b,c是三角形的三边长,请化简|a+b-c|-|a-b-c| 三角形,证明已知a²-16b²-c²+6ab+10bc=0,若a,b,c是三角形的三边长,求证:a+c=2b 设a,b,c是△ABC的三边长,如果a方;+2ab=c方;+2bc,则三角形ABC一定是( )三角形 设RT三角形ABC的三边长分别为a、b、c(a答案我知道是充要条件,求证明!充要条件是 条件可以推出结论 由结论推出条件 若a,b,c是三角形ABC的三条边长,化简:[a+b-c]-[b-a-c] 已知a b c是三角形的三边长,证明a的平方-b的平方-c的平方-2ab小于0 若a,b,c为三角形的三边长,试证明:(a^2+b^2-c^2)^2-4a^2*b^2的值一定为负.