在四边形ABCD中,AD‖BC,E、F分别是AB、CD的中点,连接EF,说明EF‖BC,且EF=二分之一(AD+BC)连结AC交EF于点G 怎么说明AG=CG

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/23 10:01:35
在四边形ABCD中,AD‖BC,E、F分别是AB、CD的中点,连接EF,说明EF‖BC,且EF=二分之一(AD+BC)连结AC交EF于点G 怎么说明AG=CG
xSMn@ Kh\t0xX .TdR0(4(@6 ܠ 3c%]U7}}}r"/Fe(o>!Lkþut&CHh`HV7Lf̳fg3KD-`<{/ "+ȃ՜r<:ZZ~z)ͬUȒ!%]1b Ha ŌHb&7)ALňFݙ>7-^dw3ZspKsWu R+h0=Ѿw\d[66T Q\PܴA˔G {J&Ub!۴qڞ4ec-͗+[Y"Xa&/Αta[jywgg ԃ6^ \N4̲}3JkOD5 tQΓI@JO`,lrn.翃MAiDЄn1e}=l'O_

在四边形ABCD中,AD‖BC,E、F分别是AB、CD的中点,连接EF,说明EF‖BC,且EF=二分之一(AD+BC)连结AC交EF于点G 怎么说明AG=CG
在四边形ABCD中,AD‖BC,E、F分别是AB、CD的中点,连接EF,说明EF‖BC,且EF=二分之一(AD+BC)
连结AC交EF于点G 怎么说明AG=CG

在四边形ABCD中,AD‖BC,E、F分别是AB、CD的中点,连接EF,说明EF‖BC,且EF=二分之一(AD+BC)连结AC交EF于点G 怎么说明AG=CG
证明;连接AF并延长,与BC的延长线交于M.
AD∥BC,则:AF/FM=DF/FC;则DF=FC.
∴AF/FM=1,得AF=FM; 同理可证:AD=CM. --------- [也可利用⊿ADF≌ΔMCF证得此结论]
又AE=EB,故EF为⊿ABM的中位线,
∴EF∥BC,且EF=(1/2)BM=(1/2)*(BC+CM)=(1/2)*(BC+AD).
由于EF∥BC,则AG/GC=AE/EB=1,因此AG=CG.

楼主证明有点怪。提供一种方法,连结AF并延长交BC直线于M,因为EF中点,所以EF平行且等于一半BM,又DF=CF,AD平行BC,内错角相等,角ADF=角DCM,又对顶角相等,角AFD=角MFC,三角形ADF于FCM全等,即AD=CM,所以EF‖BC,且EF=二分之一(AD+BC)