f(x)=(1+x)^2+ln(1+x) (1)求f(x)单调区间 (2)若x ∈[1/e-1,e-1]时不等式f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:13:25
f(x)=(1+x)^2+ln(1+x) (1)求f(x)单调区间 (2)若x ∈[1/e-1,e-1]时不等式f(x)
xRJ@|u$sdKK*$Q)BVEA1 >LMS^%^7| k4*PbB%.(~irzdrB` %"zE*v;ٓKKN1u X߼[ @XV'O>]:aߊ K4tp̺ U%D5_=԰ oXђŮM<{Oe"sCo2⟫U٫ qOGѳ.Sf$US\P"g撜wbjJ6 AdA i#g.WFMraiLQfZ

f(x)=(1+x)^2+ln(1+x) (1)求f(x)单调区间 (2)若x ∈[1/e-1,e-1]时不等式f(x)
f(x)=(1+x)^2+ln(1+x) (1)求f(x)单调区间 (2)若x ∈[1/e-1,e-1]时不等式f(x)

f(x)=(1+x)^2+ln(1+x) (1)求f(x)单调区间 (2)若x ∈[1/e-1,e-1]时不等式f(x)
f'(x)=2(x+1)(x+1)' + 1/(1+x)(x+1)'=2(x+1)+1/(x+1) (定义域:x≠-1)
(1)A:若f'(x)≥0,即2(x+1)+1/(x+1)≥0,解得x>-1
B:若f'(x)≤0,即2(x+1)+1/(x+1)≤0,解得x-1,所以x ∈[1/e-1,e-1],在f(x)的单调递增区间上,
所以,f(x)≤f(e-1),故不等式f(x)

定义域:x>-1
f'(x)=2(x+1)+1/(x+1) >0
f(x)为单调递增区间为:x ∈(-1, +∞)。
不等式f(x) f(e-1)=e^2+1e^2+1.