△ABC中,∠BAC=90°,AB=AC,直线MN过点A,BD⊥MN于D,CE⊥MN于E.(1)当MN在△ABC外部时,如图1,猜想并证明DE/DB/CE之间的等量关系;(2)当MN与线段BC相交时,即变成下图2、3时,猜想并证明DE/BD/CE之间又各有
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:31:06
xn6_EЫ)R9u@Tmm:À]iMh:rӵqأ\v,ۙWB<G.ՖNttN]+s_e+7c',z-8oaqy%98K&>J_I.d;Nratս`p}*{t'{ 4s
xyNl<9q=' jI6B3^0F+\gJ'eF~C)eP*72#46aM.N^d9~|L8)mCqռBP9d{C ʒ^K#0|i(}Dca$[/a4
△ABC中,∠BAC=90°,AB=AC,直线MN过点A,BD⊥MN于D,CE⊥MN于E.(1)当MN在△ABC外部时,如图1,猜想并证明DE/DB/CE之间的等量关系;(2)当MN与线段BC相交时,即变成下图2、3时,猜想并证明DE/BD/CE之间又各有
△ABC中,∠BAC=90°,AB=AC,直线MN过点A,BD⊥MN于D,CE⊥MN于E.
(1)当MN在△ABC外部时,如图1,猜想并证明DE/DB/CE之间的等量关系;
(2)当MN与线段BC相交时,即变成下图2、3时,猜想并证明DE/BD/CE之间又各有怎样的等量关系
图1
图2图3
△ABC中,∠BAC=90°,AB=AC,直线MN过点A,BD⊥MN于D,CE⊥MN于E.(1)当MN在△ABC外部时,如图1,猜想并证明DE/DB/CE之间的等量关系;(2)当MN与线段BC相交时,即变成下图2、3时,猜想并证明DE/BD/CE之间又各有
(1)DE=BD+CE
证明:因为AB垂直AC
所以角DAB+CAE=90度 1
又BD、CE垂直于MN
所以角DBA+DAB=90度 2
由1、2得 角DBA=CAE
又AB=AC
所以直角三角形ADB等于CEA
所以AD=CE
AE=DB
又AD+AE=DE
所以DE=BD+CE
(2) 图2 CE= BD+DE 图3 BD=DE+CE
同理于(1)
全等啊
可推出三角形ADB与三角形CEA全等,可得出DE=CE+DB
如图,在△ABC中,AB=AC,∠BAC=α,且60°
已知△ABC中,∠BAC=2∠B,AB=2AC,AE平分∠BAC,求证:∠C=90°
已知△ABC中,∠BAC=2∠B,AB=2AC,AE平分∠BAC.求证∠C=90°
已知△ABC中,AB=AC=10,∠BAC=45°,求三角形ABC的面积
如图,已知△ABC中,AB=AC.∠BAC=120°,求AB:BC的值
在△ABC中,AD是∠BAC的平分线,且AB=AC+CD.若∠BAC=68°.求∠ABC的度数.
在△ABC中,∠BAC=60°,AD是角BAC的平分线,并且AC=AB=BD,求∠ABC的度数
如图,在△ABC中,∠BAC=108°,AB=AC,BD平分∠ABC,交AC于D,求证:BC=CD+AB .
如图,在△ABC中,AB=AC,∠BAC=108°,D在AC上且BC=AB+CD,求证:BD平分∠ABC
△abc中∠bac=90°,ab=ac,d是ac中点ae⊥bd交bc于e.求证:∠adb=∠cde
如图、已知Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,求证:AC+CD=AB
如图所示,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的角平分线,求证:AC+CD=AB
在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,试说明AC+CD=AB的理由
如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,求证:AC+CD=AB
在Rt△ABC中,∠C=90°,BC=2AC,AD是∠BAC的平分线,求证:AB+2BD=5 AC
角ABC中,AB=AC,求证;∠B+2分之1∠bac=90
如图,在△ABC中,∠ACB=90°,AC=BC,AD平分∠BAC,试探索AC、CD与AB之间的数量关系
在△ABC中,AB=AC,∠BAC=90°,EC⊥AC,AE=BF,求证:AE⊥BF