a,b,c都为正数,a+b+c=1用柯西不等式证a^2+b^2+c^2>=1/3.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:19:48
a,b,c都为正数,a+b+c=1用柯西不等式证a^2+b^2+c^2>=1/3.
x)KII~ټɎ].~6uNvv)+_b';z|8#$ N357ֳI*ҧ ;${:5 PVlf!XΆ'zwrmm2Hm:&<_ ٰOvv<_w~qAbh54

a,b,c都为正数,a+b+c=1用柯西不等式证a^2+b^2+c^2>=1/3.
a,b,c都为正数,a+b+c=1用柯西不等式证a^2+b^2+c^2>=1/3.

a,b,c都为正数,a+b+c=1用柯西不等式证a^2+b^2+c^2>=1/3.
(a^2+b^2+c^2)(1+1+1)>=(a+b+c)^2=1
所以a^2+b^2+c^2>=1/3
当a=b=c=1/3时成立
就这么简单