斐波那契研究的兔子繁殖问题,请问:通项公式是什么?即:第n个数是几?

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/26 23:57:27
斐波那契研究的兔子繁殖问题,请问:通项公式是什么?即:第n个数是几?
xZ[OK+f mn!$[Hy:3yĀ$cd IE2IC6sKH-l HG$npU64mwuVw榴*_i}uF/>eC3l{J j|*){;*.V96Z2]*DKOl#å[m66ߚE/[ FYl^]>]!i-9Y =MM{C37Xjc=-ߞQ1so_8铮n஻;$3/JIx艢\'M<LQɫL?FxL,3婭⨷T+zWLidc$M UTJ=˰R~[tLOy6BcsFoDr#r1S؎o*MdX~=$h&r*ڧHYE2p)Ȗ^)&KB)gksZp)O7,)ƴuPa1B)ilLjKd/7 $7ώX^?_edFR6rbGxtpA["!x"+*MV|nOĀa-&JRlK'@ ϕ'(D)H)^zBfE\]JbaKiMjgWXHxGߢST~K|N AL[- ]GgC[[)Y vh8ͯ(W|pQuèˣ`N>6(,vkM&!=6SXL+QB9[~$4sqݱJX>VFYl~y[6sGC-XxjP#DGҎNp7Y2ӊpD=_.q:U_BkccF4V,6Ŧ[xbRK'=DJf'cer|A&tkQq'6RYft xȀܚlåה)ELd4* n>8^(O_yOx9&Q2r!*,Ȱ/ o"GU=ŏߵo*YAR06}2c߱Yƍ b)@1X/`KRGKhCRn/~R$cS'Lk_x, CJ^W?5e`Clp OFoOO,';65a9/ hCU3 q<8ˆ)j@6lm#'#Ty+* DFTr[a)d Q!B>["'fPA$ +^"vA#ԝd e%̴'+,icK#dF`c _ӞGVBYB~xY$ Q)r$r6pk| 7w5;ިTZ1622S6$chK8ZtT3$8X޿w 䖰3#XaQP!A>E7^hEQ[ΉI[`n 67~!^bN{6+6 hrRKҞP R4[{ #[{8됶o 䨸X_J:A|T|N &ʂy^ȕ5dh:]FNq7+TTNB%X0EXb&-=F:]F6XcFec#ObCœN5WM{YvU+5FW$% T:l5$d""]DH@2pH!wQ;?œ߰p5τ/7KƽvP2=`! 9Dm@#T[~'~*,{)J*ۣ(St~6n&vcO e@ _C)W?HWD&B^wߑ"LgOtF 3? .ï}[Ѝf_P+2'B;+P/.7.D?$>(F4N s77]@= NB2t;DzE’ woS)jD:|^/) к]}ވxы1KK= ),EP{@$EayŖ>'?"^~v!,7S}S2^'o*Ϧ(!KqBPR7EƹYM$<)ƭ7OBQsƫ0x 8lL舔FHPI" J!`C-o$Pq!q~ugmZccT$De߫JL5U>k/r9eO~UE$ M-\CoRWdO܁+`A2n rT Ef5}vCI}{F{3|w+xw#؟w+m?A2*)a/}uWꕟ%ĝ@$tRz~ܥgY֢;##u݊Px}"WSB}K$-ww 1nw䄛t\ہhRs1PM+4ԁhl O#=a4aUsU\>W5j]AWuUk jrweh?!nJxŒ8nK=KjU>ìuG&r(ULx~axOlq8C _p2ۜ\9𢓍l. ]Y`+vmT`_ v}Z}*v.3)- ]%oשYi*vZ/ TRbsF2-O㧟%>Jhc{| ' ڹ/$C_y,Ig*.Yt,&'(!+O,+FG!;Z?9Akq%lM9[s)<KՌW+ p]9>jeZ*~o  G}X.W t;C=?copBoPk%<mIv ͟Nm@34u~6v^ڑ${s[m`iS{ܚHlI2?G-W<ѳ̳t`jNA{A^ ZNq!g0ZI]!䄾:a1vO_#rD"L+$gh/Œc j;gˈ*:Ȯ AD6*}A[AneWǀ-ө 7`Q~_͋R;N0#h|p;M_v|<JtUzsߣ|H_vl6Y^FhD]m<2 ѫLj&A-]A1SqQ 1gX.z Mu,"K) Y*|:߁}!:׃Z^gv˟l#5'

斐波那契研究的兔子繁殖问题,请问:通项公式是什么?即:第n个数是几?
斐波那契研究的兔子繁殖问题,请问:通项公式是什么?即:第n个数是几?

斐波那契研究的兔子繁殖问题,请问:通项公式是什么?即:第n个数是几?
即斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年.籍贯大概是比萨).他被人称作“比萨的列昂纳多”.1202年,他撰写了《珠算原理》(Liber Abaci)一书.他是第一个研究了印度和阿拉伯数学理论的欧洲人.他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学.他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学.
斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和.它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的.
【该数列有很多奇妙的属性】
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……
还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1.
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到.
如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值.
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数.
【斐波那契数列别名】
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.
斐波那契数列
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来.如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
------
依次类推可以列出下表:
经过月数:0123456789101112
兔子对数:1123581321345589144233
表中数字1,1,2,3,5,8---构成了一个数列.这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项.
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.)
【斐波那挈数列通项公式的推导】
斐波那契数列:1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+).那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列.
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
【C语言程序】
main()
{
long fib[40] = {1,1};
int i;
for(i=2;i<40;i++)
{
fib[i ] = fib[i-1]+fib[i-2];
}
for(i=0;i<40;i++)
{
printf("F%d==%d\n", i, fib);
}
return 0;
}
【Pascal语言程序】
var
fib: array[0..40]of longint;
i: integer;
begin
fib[0] := 1;
fib[1] := 1;
for i:=2 to 39 do
fib[i ] := fib[i-1] + fib[i-2];
for i:=0 to 39 do
write('F', i, '=', fib[i ]);
end.
【数列与矩阵】
对于斐波那契数列1,1,2,3,5,8,13…….有如下定义
F(n)=f(n-1)+f(n-2)
F(1)=1
F(2)=1
对于以下矩阵乘法
F(n+1) = 1 1 * F(n)
F(n) 1 0 F(n-1)
它的运算就是
F(n+1)=F(n)+F(n-1)
F(n)=F(n)
可见该矩阵的乘法完全符合斐波那契数列的定义
设1 为B,1 1为C
1 1 0
可以用迭代得到:
斐波那契数列的某一项F(n)=(BC^(n-2))1
这就是斐波那契数列的矩阵乘法定义.
另矩阵乘法的一个运算法则A¬^n(n为偶数)=A^(n/2)* A^(n/2).
因此可以用递归的方法求得答案.
时间效率:O(logn),比模拟法O(n)远远高效.
代码(PASCAL)
{变量matrix是二阶方阵, matrix是矩阵的英文}
program fibonacci;
type
matrix=array[1..2,1..2] of qword;
var
c,cc:matrix;
n:integer;
function multiply(x,y:matrix):matrix;
var
temp:matrix;
begin
temp[1,1]:=x[1,1]*y[1,1]+x[1,2]*y[2,1];
temp[1,2]:=x[1,1]*y[1,2]+x[1,2]*y[2,2];
temp[2,1]:=x[2,1]*y[1,1]+x[2,2]*y[2,1];
temp[2,2]:=x[2,1]*y[1,2]+x[2,2]*y[2,2];
exit(temp);
end;
function getcc(n:integer):matrix;
var
temp:matrix;
t:integer;
begin
if n=1 then exit(c);
t:=n div 2;
temp:=getcc(t);
temp:=multiply(temp,temp);
if odd(n) then exit(multiply(temp,c))
else exit(temp);
end;
procedure init;
begin
readln(n);
c[1,1]:=1;
c[1,2]:=1;
c[2,1]:=1;
c[2,2]:=0;
if n=1 then
begin
writeln(1);
halt;
end;
if n=2 then
begin
writeln(1);
halt;
end;
cc:=getcc(n-2);
end;
procedure work;
begin
writeln(cc[1,1]+cc[1,2]);
end;
begin
init;
work;
end.
【数列值的另一种求法】
F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]
其中[ x ]表示取距离 x 最近的整数.
【数列的前若干项】
1 1
2 2
3 3
4 5
5 8
6 13
7 21
8 34
9 55
10 89
11 144
12 233
13 377
14 610
15 987
16 1597
17 2584
18 4181
19 6765
20 10946

斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
...

全部展开

斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
------
依次类推可以列出下表:
经过月数:---1---2---3---4---5---6---7---8---9---10---11---12
兔子对数:---1---1---2---3---5---8--13--21--34--55--89--144
表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个特点的证明:每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,相加。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*[(1+√5/2)^n-(1-√5/2)^n](n=1,2,3.....)
[编辑本段]斐波那契数列公式的推导
斐波那契数列:1、1、2、3、5、8、13、21、……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,,X2=(1-√5)/2
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
迭代法
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式
解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))
得α+β=1
αβ=-1
构造方程x²-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2
所以
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2
由式1,式2,可得
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4
将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

收起

斐波那契研究的兔子繁殖问题,请问:通项公式是什么?即:第n个数是几? 意大利著名数学家斐波那契在研究兔子繁殖问题时 意大利著名数学家斐波那契在研究兔子繁殖问题时 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3, 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,1,1,2,3,5,8,13,…,第N个数怎么表示? 兔子数列问题意大利文艺复兴时期的著名数学家斐波那契曾提出一个有趣的兔子繁殖问题:假定兔子在出生两个月后,每个月生一对兔子,那么,从年初刚出生的一对兔子算起,一年后共有多少对 初一课后题,关于斐波那契数列.不可能用推导通项公式做的,有什么初一孩子能做的方法吗?意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1、1、2、3、5、8、13、...,其 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1、1、2、3、5、8、13、...,其中从第三的数起,每一个数兜等于它前面两个数的和.现以这组数中的各个数作为正方形的边 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1、1、2、3、5、8、13、...,其中从第三的数起,每一个数兜等于它前面两个数的和.现以这组数中的各个数作为正方形的边 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于他前面两个数的和,现以这组数中的各个数作为正方形的长度构造正方 意大利著名数学家意大利著名数学家斐波那契在研究兔子繁殖问题时发现有这样一组数:1、1、2、3、5、8、13、...其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数 用斐波那契数列解答兔子的繁殖 斐波那契数列(兔子繁殖数列),pascal语言,高精度做~❀❤ 语言用递归法解兔子繁殖问题(斐波那契数列),求每月的兔子数目.#include void main(){int f(int n);int mounth,mounth_num;printf(请输入月份:);scanf(%d,&mounth);mounth_num=f(mounth);printf(当月兔子的数目为);pr 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从再分别依次从左到右取2个、3个、4个、5个,正方形拼成如下矩形并记为①、②、③、④.相应矩形 斐波那契数列,兔子繁殖有多快如果用△表示一对新出生的小兔子,用▲表示一对1个月大成年兔子,用圆形表示能生小兔子的成年兔子.请你在图中标出第六个月月底和第七月底的歌对兔子,把这 意大利数学家菲波那奇提出了兔子的繁殖规律问题某人想知道一年内一对兔子可以生几对小兔子,他筑了一道围墙把一对兔子关在里面,已知一对兔子每个月可以生一对小兔子,而生下来的一对 斐波那契数列 用循环语句描述这一算法(斐波那契数列)假定一对大兔子每一个月可以生一对小兔子,而小兔子出生后两个月就有繁殖能力.问从一对小兔子开始,一年后能繁殖成多少对兔子?