f''(x)连续,当x→0时,F(x)=∫x0(x∧2-t∧2)f''(t)dt的导数F'(x)与x∧2为等价无穷小,求f''(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:05:09
xőJ@_J($M$Ek~$M6-LFvq1x`-Z^,
+坵PapzI{=IZήׅW:.dNWzq^tE`[o[;W7nďh41r)f C Kv\B/uʼn̽.8s\A=pT=aE!5
50s#[XTTB(`
n@n PBF)!2.9(X?V.݀*Qu!,dCM:V1ِ%X3v 93
f''(x)连续,当x→0时,F(x)=∫x0(x∧2-t∧2)f''(t)dt的导数F'(x)与x∧2为等价无穷小,求f''(x)
f''(x)连续,当x→0时,F(x)=∫x0(x∧2-t∧2)f''(t)dt的导数F'(x)与x∧2为等价无穷小,求f''(x)
f''(x)连续,当x→0时,F(x)=∫x0(x∧2-t∧2)f''(t)dt的导数F'(x)与x∧2为等价无穷小,求f''(x)
f''(x)连续,当x→0时,F(x)=∫x0(x∧2-t∧2)f''(t)dt的导数F'(x)与x∧2为等价无穷小,求f''(x)
设f(x)有连续导数,且f(0)=0,f'(0)≠0,F(x)=∫[0,x](x^2-t^2)f(t)dt,当x→0时,F’(x)
设f(x)有连续导数,且f(0)=0,f'(0)≠0,设f(x)有连续导数,且f(0)=0,f'(0)≠0,F(x)=∫[0,x](x^2-t^2)f(t)dt,当x→0时,F’(x)与x^k是同阶无穷小,则k=?
函数f(x)连续,当x趋于0时,f(x)/x的极限为2,y=f(x)在x=0处的导数
f(x)在x=0处连续,当x→0时 f(x^2)/x^2=1,则f(0)=?
设f(x)有连续导数,且f(x)=0,f'(x)≠0,F(x)=∫x(x²-t²)f(t)dt 0(与上方x为一对)当x→0时,f'(x)与xˆk是同阶无穷小,则k=
设f(x)是连续的偶函数,且当x大于0时f(x)是单调函数,则满足f(x)=f(x+3/x+4)的所有x之和为
f(x)是连续的偶函数,其当x>0时,f(x)为单调函数,则满足f(x)=f(x+3/x+4)的所有x的和?
设f(x)当X>0时连续∫f(x)dx=2x/(1+x^2)+C,求f(x)
设当x>0时,函数f(x)连续且满足f(x)=x+∫(1,x)1/xf(t)dt,求f(x)
函数f(x)=|x-1|,当X等于多少时,连续可导
证明:若函数F(X)在点X.连续且F(X.)≠0,则存在X.的某一领域U(X.),当X∈U(X.)时,F(X)≠0怎样做
若f(x)在(a,+∞)内连续可导,当x>0,f'(x)
若f(x)在x=0处连续,且当x趋近于0时,limf(x)/x 存在,证明f(x)在x=0处可导.
当x>0时,F(x)=f(x) ,当x0时,F(x)=f(x) ,当x
设f(x)在点x=0处连续,当x不等于0时f(x)=2^(-1/x^2),则f(0)=?
若f(x)在(a,+∞)内连续可导,当x>0,f'(x)0,f'(x)
题:设f(x)=1-cos^2x/x^2,当x不等于0时,F(x)=f(x),若F(x)在点x=o点连续,则F(0) 为——