十字相乘法怎么操作我想要比较笼统的解答,不用例题哦,

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 13:54:16
十字相乘法怎么操作我想要比较笼统的解答,不用例题哦,
xXR[~aꄻSҙpׂ` ʟ$(FIB1$.|wwr+̷zIȑgv{z_Wi:k/99M9Wq=\zm}˺,zbúxS}&uqv_3wa*;*N3>êX⭷WtWO!wqoB ݕ#\i8OP@O 2!Z?1iL{gF f =#3`sva3fígiLZ|twWwiW̿v}W]Te9=k':x}Q͈-]mvW!uL # {|⥷8&j #Y6~zUާ.[J81('f|"K E5|u(:g8֎(%\ "u1_ϕW8%]2?B31wNkI;ED(Rܼl?c͸Tը-V_H<DTۡ}suv,rkRߔC3rX%+|Jk0HB.HM)K ƕucqc@Ԑ %*z E֘wp0{"GoQGfk0DDhd>\u2 #±Ai5n@TQi Kgcu[T5: h$95]eW2 HԧWJ]zM TA&Ա -#C@ "kZ [̤|j9Tr(i\`5;RwwAX!xRoїAH($݀ji.Y&.>Brsx* ^Y̖ {K,z}QIN{kDhN@5[{",m>nܧtH{s3*onxoh$ٍRƓ~m}fwN($@)NfÈE!RQZ+>%7Һ#$|ܴCjXB຅e @} v *HY 3j>] "7Ws!&F\g{w@(J5.OwbqO'PE]PI>k>ID*50Գtր? POHO myySor j{ 9x g2`B^Sy-1wk0FP\GtLtZ! В[apW+_qa .Ԇ(MVuTSGNGxzO4 ^@MR"1K>g6p{媃 64쪓3nzY*ܗv(hW~IZ*^9\5OLq$x\[('1lOG[>0QhGhD M#UL/zo!c8"vTR VF?)Nk 4B{xw|Ά 5q-ΥTvgQTQ5^U HC0Sa]=DqEG)'+m]_vs3D4LQ+ߠ;;X9wQpVBy{`1QC~? a㻥MT~|O+A! l}AEog8WuADaݥ}WT,N]ؒx?xQZ_U DǸRNMdcɀ4*W*^h<Ԥ6yB$ {^N JH] 2SC45iL!޻֓y:

十字相乘法怎么操作我想要比较笼统的解答,不用例题哦,
十字相乘法怎么操作
我想要比较笼统的解答,不用例题哦,

十字相乘法怎么操作我想要比较笼统的解答,不用例题哦,
十字相乘法概念
[编辑本段]
十字相乘法能把某些二次三项式分解因式.这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.
例题
[编辑本段]
例1 把2x^2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=1×3==(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3+2×1
=5
1 3

2 1
1×1+2×3
=7
1 -1

2 -3
1×(-3)+2×(-1)
=-5
1 -3

2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x^2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
? ╳
a2 c2
a1a2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常
叫做十字相乘法.
例2 把6x^2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1

3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x^2-7x-5=(2x+1)(3x-5).
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
1 -3

1 5
1×5+1×(-3)=2
所以x^2+2x-15=(x-3)(x+5).
例3 把5x^2+6xy-8y^2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
?╳
5 -4
1×(-4)+5×2=6
解 5x^2+6xy-8y^2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2

2 1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5 x^2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2.
=(x-3)(x+5)
总结:①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分 x^2+(p+q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax+b)(cx+d)
a b

c d
通俗方法
[编辑本段]
先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写
1 1
X
二次项系数 常数项
若交叉相乘后数值等于一次项系数则成立 ,不相等就要按照以下的方法进行试验.(一般的题很简单,最多3次就可以算出正确答案.)
需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数)
a b

c d
第一次a=1 b=1 c=二次项系数÷a d=常数项÷b
第二次a=1 b=2 c=二次项系数÷a d=常数项÷b
第三次a=2 b=1 c=二次项系数÷a d=常数项÷b
第四次a=2 b=2 c=二次项系数÷a d=常数项÷b
第五次a=2 b=3 c=二次项系数÷a d=常数项÷b
第六次a=3 b=2 c=二次项系数÷a d=常数项÷b
第七次a=3 b=3 c=二次项系数÷a d=常数项÷b
.
依此类推
直到(ad+cb=一次项系数)为止.最终的结果格式为(ax+b)(cx+d)

2x^2+7x+6
第一次:
1 1

2 6
1X6+2X1=8 8>7 不成立 继续试
第二次
1 2

2 3
1X3+2X2=7 所以 分解后为:(x+2)(2x+3)