勾股定理有多少种证明方法/

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 00:43:57
勾股定理有多少种证明方法/
xXR~LlS\?GrU$ !1l 0)YI NX+gvW+Yꜛ\H{YݼK.]yܝ%zKiwڵS5ݿu@u(irw'?ܐ%o)Al2Un|=xwϺ󝳒xnKξmWڧ ϹԒGO'Zo;k2?'oۧ)-ҽs m.|5#[nw`B[/,8r5z7Bf|0a+'؅$=i7JL=`2_c}/l].=0|)%\ZkCF6I>աu(Œ7enZr|4/c)_-Dv|O{H9JJ K@H*D%° KUbzNY_f6]a,&6L#EdOCƤF/ĝ'Ͻ}5pxsWVĴE{'߹rҙ;<4uw8y0Ѱ.nZ=e5I$Vcsr^&^mT$>&D\QsL&(8VPOg*|<ۆZ9Pqn%Xd, w șɚڪp2x遂L"US9#BDhgbB=hnuE.D=A$e[щ *XS}DT Khqv_@DqFZsԯߚӛ6_7lLoEh96*W=R|eɩ&=R&'C10 cXtgi%Uz*5+zJ¤LT7c}QӫuT01RyLqq! 8&DJg([}Z2|z?~ 5jL/zGL8iE3@NJNeG:'4 YlYq )UZBbpgK5M`9SU~ +a]ȥJϵN&m!:TP&&E (A*^T=v-T*d陻s!>= ě% 2ȵ`.1` j}dDC;_.{zD4{z=$͒AʯDW:LH^z. 0".SsLH D? 9O:l9::CLWfe>Nxrh^*וX/'OiݥJF=qGoJu4zM\5|wn [ߺB}F@zˉQ-LbnJl(~_#"pI9e领$\hz:ܥ`b0`Q Q}s Hwc6~\CA<{?J~0 ! AL[OdcknRS/tOFʡ1k$Dmꋝ z2(XEPx.0`p -i:hn Þ86<(2j*4TsOs]*@ b%UyIPЎ0up=$X4 +P;A:*Ĝ` (iй6uz Vb2= e H^斂wl+6XSot 9~\'>;hEѬ!8pߐ"ijbۄMG{^pÐA!1lFIW4z2 MEцL^G&X|]5o 3ȃ]ð3?5rp'E)#|

勾股定理有多少种证明方法/
勾股定理有多少种证明方法/

勾股定理有多少种证明方法/
勾股定理有500多种证明方法,最著名的有5种: 【证法1】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴∠EGF = ∠BED, ∵∠EGF + ∠GEF = 90°, ∴∠BED + ∠GEF = 90°, ∴∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴∠ABC = ∠EBD. ∴∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°, BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 , ∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2 【证法2】(项明达证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵∠BCA = 90°,QP∥BC, ∴∠MPC = 90°, ∵ BM⊥PQ, ∴∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°. ∵∠QBM + ∠MBA = ∠QBA = °, ∠ABC + ∠MBA = ∠MBC = 90°, ∴∠QBM = ∠ABC, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2 【证法3】(赵浩杰证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c, ∠CJB = ∠CFD = 90°, ∴RtΔCJB ≌ RtΔCFD , 同理,RtΔABG ≌ RtΔADE, ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE ∴∠ABG = ∠BCJ, ∵∠BCJ +∠CBJ= 90°, ∴∠ABG +∠CBJ= 90°, ∵∠ABC= 90°, ∴G,B,I,J在同一直线上, 所以a^2+b^2=c^2 【证法4】(欧几里得证明) 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE, 交AB于点M,交DE于点L. ∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ΔFAB ≌ΔGAD, ∵ΔFAB的面积等于, ΔGAD的面积等于矩形ADLM 的面积的一半, ∴ 矩形ADLM的面积 =. 同理可证,矩形MLEB的面积 =. ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴即a的平方+b的平方=c的平方 【证法5】欧几里得的证法 《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立. 设△ABC为一直角三角形,其中A为直角.从A点划一直线至对边,使其垂直于对边上的正方形.此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等. 在正式的证明中,我们需要四个辅助定理如下: 如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等.(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半. 任意一个正方形的面积等于其二边长的乘积. 任意一个四方形的面积等于其二边长的乘积(据辅助定理3). 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形. 其证明如下: 设△ABC为一直角三角形,其直角为CAB. 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH. 画出过点A之BD、CE的平行线.此线将分别与BC和DE直角相交于K、L. 分别连接CF、AD,形成两个三角形BCF、BDA. ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H. ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC. 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC. 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD. 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC. 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2. 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2. 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2. 此证明是于欧几里得《几何原本》一书第1.47节所提出的
记得采纳啊