初二数学上期末评价测试卷第二张答案,要过程!速度!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:57:04
初二数学上期末评价测试卷第二张答案,要过程!速度!
xYNH~fS+aV jPjEUrwBqJrh![ P@@d==NpSB<3};L̜9d[FꓙX6䐑=3OG ;X.[刵3*2[ONooT)$CH@+ ^D˔p(ȿHݽZr}>}=)>jC4xHL(U<4>:4qk\ F*oN!#a 12lq\1$C 0W0U,^E ;CqDOcklyւe9D9 XZΨt<ch-02S8/;)ѯ, "mY2)1$(IVv/R5?Ȟ;7)>(I }^ ޵5۸7k7MoI-dOuye/Ҽř=wB }˽U>wųH.=T sXPo<Ҧ8_`O.78cg!8#|d012Yx?HN(HNj@O(G|HY"N9ًML-7{ZoS* )`Z~'^f_8(?._R/PxȮñO@yq'BHZXs,Qɹμ]hhMx aL M# O 9ld0 " St^ZH^?{)/:{s:¡qIvӠIކ[sU­ / 59ꐅŅuIp_*[e6[„}lbLdWB{{J}poV9&>>9A$.ale?18ԯ>P&mkWҢ(1koMl}ųՊ6$4Ip fN_P tx˵唢ři];=_{. h ~.+tu=FF+T OnVQUVmHLS OPQl m'zڡj ʿ1TsGeÇwRM<;6C̿ZTth,ɺ+yXUsHfoOU)O\h: 08(z}#7;ѮtEaJNZHJ9G떋{Kޑy<`ӣaZ-p_VM6ߋۅӕTߡy[/wB3iSgN&Q%Wl\Z}n";(oдE2uNf=?.xA X3S8'bk,t[(C9^gEn߸NE,,k r>jRߟA3^D fq12VxG#HB˴_kq

初二数学上期末评价测试卷第二张答案,要过程!速度!
初二数学上期末评价测试卷第二张答案,要过程!速度!

初二数学上期末评价测试卷第二张答案,要过程!速度!
浦东新区2007学年度第二学期期末初二数学试卷
一、选择题:(本大题共6题,每题2分,满分12分)
1.直线 与y轴的交点的纵坐标是……………………………………………( )
(A)2; (B)?2; (C)3; (D)?3.
2.用换元法解方程 时,可以设 ,那么原方程可化为…( )
(A) ; (B) ;
(C) ; (D) .
3.下列方程中,有实数根的方程是……………………………………………………( )
(A) ; (B) ; (C) ; (D) .
4.已知平行四边形ABCD的两条对角线AC和BD相交于点O,长度分别等于8cm和12cm,如果边BC长等于6cm,那么△BOC的周长等于………………………………………( )
(A)14; (B)15; (C)16; (D)17.
5.下列命题中,假命题是………………………………………………………………( )
(A)梯形的两条对角线相等; (B)矩形的两条对角线互相平分;
(C)菱形的两条对角线互相垂直; (D)正方形的每一条对角线平分一组对角.
6.下列事件中,确定事件是………………………………………………………………( )
(A)关于x的方程 有实数解; (B)关于x的方程 有实数解;
(C)关于x的方程 有实数解;(D)关于x的方程 有实数解.
二、填空题:(本大题共12题,每题3分,满分36分)
7.方程 的解是 .
8.如果函数 是一次函数,那么a .
9.如果点A(2,m)和点B(4,n)在函数 的图像上,那么m、n的大小关系是:m n.(用“>”、“=”或“; 10.4; 11. 等; 12.900; 13. ; 14.5;15.方向; 16. ; 17. ; 18. .
三、解答题:
19.由②得 y=2x.……………………………………………………………………(1分)
代入①得 5x2=20.………………………………………………………………(1分)
∴ x=±2.…………………………………………………………………………(1分)
当x=2时,y=4;当x=-2时,y=-4.……………………………………………(1分)
∴ 方程组的解是 …………………………………………(2分)
20.作图各2分,结论各1分.
21.在平行四边形ABCD中,
∵AD‖BC,∴∠DAP=∠APB.…………………………………………………(2分)
∵∠DAP=∠BAP,∴∠APB=∠BAP.…………………………………………(1分)
∴AB=BP.…………………………………………………………………………(2分)
∵AB=CD,∴PC=BC-BP=2.……………………………………………………(2分)
22.(1)2;……………………………………………………………………………(1分)
(2)2;………………………………………………………………………………(1分)
(3)甲的路程与时间的函数解析式为 S=5t.……………………………………(1分)
当S=35时,t=7.………………………………………………………………(1分)
设乙的路程与时间的函数解析式为 S=kt+b.
根据题意,得 解得
∴乙的路程与时间的函数解析式为S=10t-20.………………………………(1分)
当S=35时,t=5.5.……………………………………………………………(1分)
∴7-5.5=1.5.
答:乙比甲早1.5小时到达B地.……………………………………………(1分)
23.设乙班学生的人数为x名,则甲班学生的人数为(x+2)名.………………(1分)
根据题意,得 .………………………………………………(3分)
整理,得 .…………………………………………………(1分)
解得 , . ……………………………………………………(1分)
经检验: , 都是原方程的根,但 不符合题意,舍去.
…………………………………………………………………………………(1分)
答:甲班学生的人数为42名,乙班学生的人数为40名.……………………(1分)
24.证明:∵AE‖BC,∴∠AED=∠MCD,∠EAD=∠CMD.…………………………(1分)
∵AD=MD,∴△AED≌△MCD.………………………………………………(1分)
∴AE=CM.………………………………………………………………………(1分)
∵BM=CM,∴AE=BM.
∴四边形AEBM是平行四边形.………………………………………………(1分)
∴EB=AM.………………………………………………………………………(1分)
而AM=AC,∴EB=AC.…………………………………………………………(1分)
∵AE‖BC,EB与AC不平行,∴四边形EBCA是梯形.……………………(1分)
∴梯形EBCA是等腰梯形.………………………………………………………(1分)
25.(1)联结AC.在菱形ABCD中,
∵AB=BC,∠B=60°,∴△ABC是等边三角形.……………………………(1分)
∴AC=AB,∠BAC=∠BCA=60°.
∵∠PAQ=60°,∴∠BAP=∠CAQ.……………………………………………(1分)
∵AB‖CD,∠B=60°,∴∠BCD=120°.
∴∠ACQ=∠B=60°.
∴△ABP≌△ACQ.………………………………………………………………(1分)
∴AP=AQ.………………………………………………………………………(1分)
∴△APQ是等边三角形.………………………………………………………(1分)
(2)由△APQ是等边三角形,得AP=PQ=y.
作AH⊥BC于点H,由AB=4,BH=2,∠B=60°,得AH= . ………(1分)
∴ ,即 .………………………………(1分)
定义域为x≥0.…………………………………………………………………(1分)
(3)(i)当点P在边BC上时,
∵PD⊥AQ,AP=PQ,∴PD垂直平分AQ.
∴AD=DQ.
∴CQ=0.…………………………………………………………………………(1分)
又∵BP=CQ,∴BP=0.
(ii)当点P在边BC的延长线上时,
同理可得BP=8.…………………………………………………………………(1分)
综上所述,BP=0或BP=8.